daicy
发布于 2020-12-21 / 1243 阅读
0
0

solr查询工作原理深入内幕

1.什么是Lucene?

作为一个开放源代码项目,Lucene从问世之后,引发了开放源代码社群的巨大反响,程序员们不仅使用它构建具体的全文检索应用,而且将之集成到各种系统软件中去,以及构建Web应用,甚至某些商业软件也采用了Lucene作为其内部全文检索子系统的核心。apache软件基金会的网站使用了Lucene作为全文检索的引擎,IBM的开源软件eclipse的2.1版本中也采用了Lucene作为帮助子系统的全文索引引擎,相应的IBM的商业软件Web Sphere中也采用了Lucene。Lucene以其开放源代码的特性、优异的索引结构、良好的系统架构获得了越来越多的应用。

Lucene作为一个全文检索引擎,其具有如下突出的优点:

(1)索引文件格式独立于应用平台。Lucene定义了一套以8位字节为基础的索引文件格式,使得兼容系统或者不同平台的应用能够共享建立的索引文件。

(2)在传统全文检索引擎的倒排索引的基础上,实现了分块索引,能够针对新的文件建立小文件索引,提升索引速度。然后通过与原有索引的合并,达到优化的目的。

(3)优秀的面向对象的系统架构,使得对于Lucene扩展的学习难度降低,方便扩充新功能。

(4)设计了独立于语言和文件格式的文本分析接口,索引器通过接受Token流完成索引文件的创立,用户扩展新的语言和文件格式,只需要实现文本分析的接口。

(5)已经默认实现了一套强大的查询引擎,用户无需自己编写代码即使系统可获得强大的查询能力,Lucene的查询实现中默认实现了布尔操作、模糊查询(Fuzzy Search)、分组查询等等。

2.什么是solr?

为什么要solr:

  solr是将整个索引操作功能封装好了的搜索引擎系统(企业级搜索引擎产品)

  solr可以部署到单独的服务器上(WEB服务),它可以提供服务,我们的业务系统就只要发送请求,接收响应即可,降低了业务系统的负载

  solr部署在专门的服务器上,它的索引库就不会受业务系统服务器存储空间的限制

  solr支持分布式集群,索引服务的容量和能力可以线性扩展

solr的工作机制:

  solr就是在lucene工具包的基础之上进行了封装,而且是以web服务的形式对外提供索引功能

  业务系统需要使用到索引的功能(建索引,查索引)时,只要发出http请求,并将返回数据进行解析即可

Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器。Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展,并对索引、搜索性能进行了优化。

Solr可以独立运行,运行在Jetty、Tomcat等这些Servlet容器中,Solr 索引的实现方法很简单,用 POST 方法向 Solr 服务器发送一个描述 Field 及其内容的 XML 文档,Solr根据xml文档添加、删除、更新索引 。Solr 搜索只需要发送 HTTP GET 请求,然后对 Solr 返回Xml、json等格式的查询结果进行解析,组织页面布局。Solr不提供构建UI的功能,Solr提供了一个管理界面,通过管理界面可以查询Solr的配置和运行情况。

3.lucene和solr的关系

solr是门户,lucene是底层基础,solr和lucene的关系正如hadoop和hdfs的关系。

 4.Jetty是什么?

  Jetty 是一个开源的servlet容器,它为基于Java的web容器,例如JSP和servlet提供运行环境。Jetty是使用Java语言编写的,它的API以一组JAR包的形式发布。开发人员可以将Jetty容器实例化成一个对象,可以迅速为一些独立运行(stand-alone)的Java应用提供网络和web连接。

5.流程概况

6.Jetty接收请求并处理

设置本地调试见<lucene-solr本地调试方法>所示

StartSolrJetty.java

public static void main( String[] args ) 
  {
    //System.setProperty("solr.solr.home", "../../../example/solr");

    Server server = new Server();
    ServerConnector connector = new ServerConnector(server, new HttpConnectionFactory());
    // Set some timeout options to make debugging easier.
    connector.setIdleTimeout(1000 * 60 * 60);
    connector.setSoLingerTime(-1);
    connector.setPort(8983);
    server.setConnectors(new Connector[] { connector });
    
    WebAppContext bb = new WebAppContext();
    bb.setServer(server);
    bb.setContextPath("/solr");
    bb.setWar("solr/webapp/web");

//    // START JMX SERVER
//    if( true ) {
//      MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
//      MBeanContainer mBeanContainer = new MBeanContainer(mBeanServer);
//      server.getContainer().addEventListener(mBeanContainer);
//      mBeanContainer.start();
//    }
    
    server.setHandler(bb);

    try {
      System.out.println(">>> STARTING EMBEDDED JETTY SERVER, PRESS ANY KEY TO STOP");
      server.start();
      while (System.in.available() == 0) {
        Thread.sleep(5000);
      }
      server.stop();
      server.join();
    } 
    catch (Exception e) {
      e.printStackTrace();
      System.exit(100);
    }
  }

其中,Server是http服务器,聚合了Connector(http请求接收器)和请求处理器Hanlder,Server本身是一个handler和一个线程池,Connector使用线程池来调用handle方法。

/** Jetty HTTP Servlet Server.
 * This class is the main class for the Jetty HTTP Servlet server.
 * It aggregates Connectors (HTTP request receivers) and request Handlers.
 * The server is itself a handler and a ThreadPool.  Connectors use the ThreadPool methods
 * to run jobs that will eventually call the handle method.
 */

其工作流程如下图所示

因其不是本文重点,故略去不述。

7.solr调用lucene过程

上篇文章<solr调用lucene底层实现倒排索引源码解析>已经论述,可对照上面的整体流程图进行解读,故略去不述

 8.lucene调用过程

从上图可以看出分两个阶段

8.1 创建Weight

   8.1.1 创建BooleanWeight

BooleanWeight.java

  BooleanWeight(BooleanQuery query, IndexSearcher searcher, boolean needsScores, float boost) throws IOException {
    super(query);
    this.query = query;
    this.needsScores = needsScores;
    this.similarity = searcher.getSimilarity(needsScores);
    weights = new ArrayList<>();
    for (BooleanClause c : query) {
      Query q=c.getQuery();
      Weight w = searcher.createWeight(q, needsScores && c.isScoring(), boost);
      weights.add(w);
    }
  }

  8.1.2 同义词权重分析

SynonymQuery.java

  @Override
  public Weight createWeight(IndexSearcher searcher, boolean needsScores, float boost) throws IOException {
    if (needsScores) {
      return new SynonymWeight(this, searcher, boost);
    } else {
      // if scores are not needed, let BooleanWeight deal with optimizing that case.
      BooleanQuery.Builder bq = new BooleanQuery.Builder();
      for (Term term : terms) {
        bq.add(new TermQuery(term), BooleanClause.Occur.SHOULD);
      }
      return searcher.rewrite(bq.build()).createWeight(searcher, needsScores, boost);
    }
  }

8.1.3 TermQuery.java

  @Override
  public Weight createWeight(IndexSearcher searcher, boolean needsScores, float boost) throws IOException {
    final IndexReaderContext context = searcher.getTopReaderContext();
    final TermContext termState;
    if (perReaderTermState == null
        || perReaderTermState.wasBuiltFor(context) == false) {
      if (needsScores) {
        // make TermQuery single-pass if we don't have a PRTS or if the context
        // differs!
        termState = TermContext.build(context, term);
      } else {
        // do not compute the term state, this will help save seeks in the terms
        // dict on segments that have a cache entry for this query
        termState = null;
      }
    } else {
      // PRTS was pre-build for this IS
      termState = this.perReaderTermState;
    }

    return new TermWeight(searcher, needsScores, boost, termState);
  }

调用TermWeight,计算CollectionStatistics和TermStatistics

    public TermWeight(IndexSearcher searcher, boolean needsScores,
        float boost, TermContext termStates) throws IOException {
      super(TermQuery.this);
      if (needsScores && termStates == null) {
        throw new IllegalStateException("termStates are required when scores are needed");
      }
      this.needsScores = needsScores;
      this.termStates = termStates;
      this.similarity = searcher.getSimilarity(needsScores);

      final CollectionStatistics collectionStats;
      final TermStatistics termStats;
      if (needsScores) {
        termStates.setQuery(this.getQuery().getKeyword());
        collectionStats = searcher.collectionStatistics(term.field());
        termStats = searcher.termStatistics(term, termStates);
      } else {
        // we do not need the actual stats, use fake stats with docFreq=maxDoc and ttf=-1
        final int maxDoc = searcher.getIndexReader().maxDoc();
        collectionStats = new CollectionStatistics(term.field(), maxDoc, -1, -1, -1);
        termStats = new TermStatistics(term.bytes(), maxDoc, -1,term.bytes());
      }
     
      this.stats = similarity.computeWeight(boost, collectionStats, termStats);
    }

调用Similarity的computeWeight

BM25Similarity.java

  @Override
  public final SimWeight computeWeight(float boost, CollectionStatistics collectionStats, TermStatistics... termStats) {
    Explanation idf = termStats.length == 1 ? idfExplain(collectionStats, termStats[0]) : idfExplain(collectionStats, termStats);
    float avgdl = avgFieldLength(collectionStats);

    float[] oldCache = new float[256];
    float[] cache = new float[256];
    for (int i = 0; i < cache.length; i++) {
      oldCache[i] = k1 * ((1 - b) + b * OLD_LENGTH_TABLE[i] / avgdl);
      cache[i] = k1 * ((1 - b) + b * LENGTH_TABLE[i] / avgdl);
    }
    return new BM25Stats(collectionStats.field(), boost, idf, avgdl, oldCache, cache);
  }

8.2 查询过程

  完整过程如下:IndexSearcher调用search方法

  protected void search(List<LeafReaderContext> leaves, Weight weight, Collector collector)
      throws IOException {

    // TODO: should we make this
    // threaded...?  the Collector could be sync'd?
    // always use single thread:
    for (LeafReaderContext ctx : leaves) { // search each subreader
      final LeafCollector leafCollector;
      try {
        leafCollector = collector.getLeafCollector(ctx);//1
      } catch (CollectionTerminatedException e) {
        // there is no doc of interest in this reader context
        // continue with the following leaf
        continue;
      }
      BulkScorer scorer = weight.bulkScorer(ctx);//2
      if (scorer != null) {
        try {
          scorer.score(leafCollector, ctx.reader().getLiveDocs());//3
        } catch (CollectionTerminatedException e) {
          // collection was terminated prematurely
          // continue with the following leaf
        }
      }
    }
  }

 8.2.1 获取Collector

TopScoreDocCollector.java#SimpleTopScoreDocCollector

    @Override
    public LeafCollector getLeafCollector(LeafReaderContext context)
        throws IOException {
      final int docBase = context.docBase;
      return new ScorerLeafCollector() {

        @Override
        public void collect(int doc) throws IOException {
          float score = scorer.score();
/*          Document document=context.reader().document(doc);
*/       
          // This collector cannot handle these scores:
          assert score != Float.NEGATIVE_INFINITY;
          assert !Float.isNaN(score);

          totalHits++;
          if (score <= pqTop.score) {
            // Since docs are returned in-order (i.e., increasing doc Id), a document
            // with equal score to pqTop.score cannot compete since HitQueue favors
            // documents with lower doc Ids. Therefore reject those docs too.
            return;
          }
          pqTop.doc = doc + docBase;
          pqTop.score = score;
          pqTop = pq.updateTop();
        }

      };
    }

8.2.2 调用打分socore

  /**
   * Optional method, to return a {@link BulkScorer} to
   * score the query and send hits to a {@link Collector}.
   * Only queries that have a different top-level approach
   * need to override this; the default implementation
   * pulls a normal {@link Scorer} and iterates and
   * collects the resulting hits which are not marked as deleted.
   *
   * @param context
   *          the {@link org.apache.lucene.index.LeafReaderContext} for which to return the {@link Scorer}.
   *
   * @return a {@link BulkScorer} which scores documents and
   * passes them to a collector.
   * @throws IOException if there is a low-level I/O error
   */
  public BulkScorer bulkScorer(LeafReaderContext context) throws IOException {

    Scorer scorer = scorer(context);
    if (scorer == null) {
      // No docs match
      return null;
    }

    // This impl always scores docs in order, so we can
    // ignore scoreDocsInOrder:
    return new DefaultBulkScorer(scorer);
  }

  /** Just wraps a Scorer and performs top scoring using it.
   *  @lucene.internal */
  protected static class DefaultBulkScorer extends BulkScorer {
    private final Scorer scorer;
    private final DocIdSetIterator iterator;
    private final TwoPhaseIterator twoPhase;

    /** Sole constructor. */
    public DefaultBulkScorer(Scorer scorer) {
      if (scorer == null) {
        throw new NullPointerException();
      }
      this.scorer = scorer;
      this.iterator = scorer.iterator();
      this.twoPhase = scorer.twoPhaseIterator();
    }

    @Override
    public long cost() {
      return iterator.cost();
    }

    @Override
    public int score(LeafCollector collector, Bits acceptDocs, int min, int max) throws IOException {
      collector.setScorer(scorer);
      if (scorer.docID() == -1 && min == 0 && max == DocIdSetIterator.NO_MORE_DOCS) {
        scoreAll(collector, iterator, twoPhase, acceptDocs);
        return DocIdSetIterator.NO_MORE_DOCS;
      } else {
        int doc = scorer.docID();
        if (doc < min) {
          if (twoPhase == null) {
            doc = iterator.advance(min);
          } else {
            doc = twoPhase.approximation().advance(min);
          }
        }
        return scoreRange(collector, iterator, twoPhase, acceptDocs, doc, max);
      }
    }

调用scoreAll方法,遍历Document,执行SimpleTopScoreDocCollector的collect方法,包含打分逻辑<见SimpleTopScoreDocCollector代码>。

    /** Specialized method to bulk-score all hits; we
     *  separate this from {@link #scoreRange} to help out
     *  hotspot.
     *  See <a href="https://issues.apache.org/jira/browse/LUCENE-5487">LUCENE-5487</a> */
    static void scoreAll(LeafCollector collector, DocIdSetIterator iterator, TwoPhaseIterator twoPhase, Bits acceptDocs) throws IOException {
      if (twoPhase == null) {
        for (int doc = iterator.nextDoc(); doc != DocIdSetIterator.NO_MORE_DOCS; doc = iterator.nextDoc()) {
          if (acceptDocs == null || acceptDocs.get(doc)) {
            collector.collect(doc);
          }
        }
      } else {
        // The scorer has an approximation, so run the approximation first, then check acceptDocs, then confirm
        final DocIdSetIterator approximation = twoPhase.approximation();
        for (int doc = approximation.nextDoc(); doc != DocIdSetIterator.NO_MORE_DOCS; doc = approximation.nextDoc()) {
          if ((acceptDocs == null || acceptDocs.get(doc)) && twoPhase.matches()) {
            collector.collect(doc);
          }
        }
      }
    }

总结:

  梳理整理整个流程太累了。

 参考资料

【1】http://www.blogjava.net/hoojo/archive/2012/09/06/387140.html

【2】https://baike.baidu.com/item/jetty/370234?fr=aladdin


评论